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Automatic text classification using text-mining 
techniques: Application to the definitions used 
in the National Employment Survey of Chile 
 
 
 

Abstract 
This document explores the methodological aspects of the automatic classification of texts, 
a task that consists of assigning free text documents to one or more predefined classes based 
on their content. To this end, the use of three machine-learning techniques is described: 
naïve Bayes (NB), support vector machine (SVM), and random forests (RF). The study 
analyzes the particular properties of learning with text data and identifies why these 
techniques are appropriate for this task. These techniques were evaluated empirically to 
support the theoretical findings, using the classification of the “profession, job, or 
occupation” and the “economic sector” of the employed population, which is based on data 
from the National Employment Survey (ENE) collected in 2017 by the National Statistics 
Institute (INE). All the evaluated techniques performed well in the classification. SVM 
performed best, its overall precision approximately 90%. SVM showed consistent precision 
in a wide variety of situations, and it is completely automatic, eliminating the need for 
manual adjustment of parameters. 
 
Keywords: text mining, classification of texts, machine learning, national employment 
survey 
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1. Introduction 
With the rapid growth of online information, text classification has become one of 
the key techniques for managing and organizing text data. Text categorization 
techniques are used to classify news, to find information of interest on the World 
Wide Web (WWW), and to guide user searches through hypertext (Joachims, 1998). 
Trained professionals are used to classify new items, but this process is costly and 
time consuming, limiting its utility. Consequently, there has been a growing interest 
in the development of technologies for automatic text classification (Aas & Eikvil, 
1999). 

 

For these purposes, a number of statistical-classification and machine-learning 
techniques have been applied to the classification of texts, including regression 
models (Aas & Eikvil, 1999), classifiers based on nearest neighbors (Aas & Eikvil, 
1999; Pérez, 2017), decision trees (Pérez, 2017), Bayesian classifiers (Aas & Eikvil, 
1999; Mitchell, 1997), rule learning algorithms (Aas & Eikvil, 1999), support vector 
machines (Joachims, 1998; Berry & Kogan, 2010), and neural networks (Aas & 
Eikvil), among others. 

 

This same situation has been experienced at the National Statistics Institute (INE). 
INE, in the exercise of its public role, needs to develop and implement technological 
tools that address the tasks of coding large volumes of texts from open questions in 
the surveys that it conducts. This need has arisen within the processes required for 
the production of labor and sociodemographic statistics with strict publication 
deadlines. Currently, the coding process is performed manually and has a precision 
of approximately 84%. This process requires more than 3,600 working hours per 
month. For this reason, a solution is needed that outperforms manual sorting in 
efficiency and speed.      

 

To assess which solution should be implemented at INE, it was decided to measure 
the quality and progress in the field of text classification, which requires a 
standardized collection of documents for analysis and testing (Aas & Eikvil, 1999). 
Within this framework, this study applies the automatic text classification procedure 
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to a data set containing the definitions (documents) on the “trade, job, or occupation” 
and the “economic sector” of the employed population, based on data from the 
National Employment Survey (ENE) collected in 2017 by INE. Thus, this study seeks 
to 1) describe the steps inherent to an automatic text-classification process following 
a text-mining scheme; 2) analyze appropriate algorithms for text classification (i.e., 
machine learning algorithms such as naïve Bayes (NB), support vector machine 
(SVM) and random forests (RF); 3) build automatic classifiers for the definitions 
used in the ENE, based on the above techniques; and 4) evaluate the performance of 
the classifiers through the use of statistical metrics and select the most appropriate. 
 

This study will analyze the methodological aspects related to an automatic text 
classification problem, ranging from the transformation of texts into an adequate 

representation for classification tasks—which has been traditionally addressed using 

a vector space model because of its simplicity and good performance (Aas & Eikvil, 

1999; Alfaro & Allende, 2011; Welbers et al., 2017)—to the application of a 

classification technique and its subsequent evaluation. 

 

This document is divided into six sections. The first section is the introduction to the 
study. Section 2 outlines the steps necessary for transforming raw texts into a 
representation suitable for classification tasks. Section 3 describes three successful 
techniques that have been chosen for the purposes of this study. Section 4 introduces 
performance metrics for the assessment of classification in a binary problem. Section 
5 presents the experiments conducted using the ENE 2017 data set. Finally, section 
6 provides conclusions and projections based on the results.  
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2. Data Preparation 
Data preparation is the starting point of any statistical data analysis. Computational 
text analysis is no different in this respect, and it often presents some special 
challenges that can be daunting for both beginning and advanced analysts. 
Furthermore, preparing texts for analysis requires making decisions that can affect 
the precision, validity, and findings of a text-analysis study and can determine the 
techniques and methods used in the analysis (Welbers et al., 2017). 

This section describes some preprocessing procedures and criteria for the selection 
of features and representation of texts. It then addresses the effectiveness of 
classification measures for class filtering. 

2.1. Preprocessing 
The initial step in text classification is to transform documents (typically, strings of 
characters) into a representation suitable for the learning algorithm and the 
classification task. The transformation of texts proceeds as follows (Aas & Eikvil, 
1999; Welbers et al, 2017): 

First, the process of text normalization is applied. In this process, words are 
transformed into a more uniform format so that a classifier can recognize when two 
words have (approximately) the same meaning, even if they are written in a slightly 
different form. Text normalization reduces the range of the vocabulary (i.e., the full 
range, or dimension, of the features used in the analysis). The process includes the 
following steps, whose order of execution is not arbitrary: (1) convert all text to 
lowercase, (2) remove html or other tags (special characters), (3) remove 
punctuation marks, (4) remove numbers, and (5) remove multiple blank spaces. 

Next is tokenization, a process that consists of dividing a text or document into 
more specific features known as tokens, which are typically words or word 
combinations that constitute the most significant semantic components of texts. 
Because full texts are too specific to perform any meaningful calculations, 
tokenization is crucial to computational analysis. 

2.2. Selection of features 
In text classification, the selection of appropriate features (a word or token in a 
document) can be quite useful. Features are selected according to their contributions 
to class discrimination. If not selected, they are removed from the data in order to 
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learn from and implement models. The two objectives in the selection of features are 
to reduce the dimensionality in the space of document features and to filter out 
irrelevant features. These objectives help to build an accurate and efficient model for 
document classification.  

The reduction of dimensionality seeks to decrease the number of features to be 
modeled while preserving the content of individual documents. This generally helps 
to speed up the training process of a model. Filtering, meanwhile, is valuable for 
machine-learning algorithms such as RBF neural networks, which treat every data 
feature equally in their distance calculations and are therefore unable to distinguish 
between relevant and irrelevant features. 

2.2.1. Procedure 

The selection of features consists of two steps (Berry & Kogan, 2010): 

1. For a given set of data, features are extracted and selected under an 
unsupervised scheme1 by first removing common or high frequency words (called 
stop words), which are words that do not convey information about the content of 
the document (i.e., pronouns, articles, prepositions, conjunctions, etc.), and then 
applying a stemming procedure that removes suffixes to generate “stem or origin 
words”. In the latter process, words with the same conceptual meaning, such as “do” 
and “doing”, are grouped together. 
 
2. In the documents, or corpus (i.e., the collection of documents), features 
whose frequency is below a defined threshold are removed from the data set. Such 
features do not assist in the differentiation of documents by class, and they can add 
noise to document classification. The selection process also eliminates features with 
very high frequency in the corpus of the data set because many of these features are 
distributed almost equally among the various classes and therefore are not valuable 
for characterizing the classes of the features. The features are then selected by their 
frequency distributions among the training documents of the different classes. Using 
the labeled training documents, this supervised feature-selection procedure seeks an 

 

1 An unsupervised scheme refers to automatic learning in which a model is adjusted to observations 
without a priori knowledge of the labels, or classes, to which they belong. 
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improved identification of the features with the greatest power to discriminate 
between classes. 

2.2.2. Methods for the selection of features 

Several supervised methods2 for feature selection have been widely used in text 
classification (Sebastiani, 2002). These include the following metrics: information 
gain (IG), Chi-square statistic (CHI), and Odds Ratio (OR).  

Information Gain (IG) 

The IG criterion quantifies the amount of information obtained for class prediction 
by ascertaining the presence or absence of a feature in the document. The IG of a 

feature 𝑡 in a class 𝑐 can be expressed as: 

 

𝐼𝐺(𝑡, 𝑐) = ) ) 𝑃(𝑡, 𝑐)
!∈{!,!̅}'∈{','}̅

𝑙𝑜𝑔 .
𝑃(𝑡, 𝑐)
𝑃(𝑡)𝑃(𝑐)

/ 

 

 

(1) 

 

 

  

Where 𝑃(𝑐) and 𝑃(𝑡) denote the probability that a document belongs to class 𝑐 and 

the probability that a feature 𝑡 occurs in a document, respectively. 𝑃(𝑡, 𝑐) denotes the 

joint probability of 𝑡 and	𝑐. 

All probabilities can be estimated by frequency counts from the training data.  

Chi-square statistic (CHI) 

Another popular method of selecting features is the CHI statistic. This statistic 

measures the lack of independence between the occurrence of feature 𝑡 and the 

occurrence of class 𝑐. The features are classified according to the following quantity:  

 

2 A supervised method is a technique that learns from a set of labeled examples (documents) whose 
class is known a priori. 
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𝐶𝐻𝐼(𝑡, 𝑐) =
𝑛[𝑃(𝑡, 𝑐)𝑃(𝑡̅, 𝑐̅) − 𝑃(𝑡, 𝑐̅)𝑃(𝑡̅, 𝑐)](

𝑃(𝑡)𝑃(𝑡̅)𝑃(𝑐)𝑃(𝑐̅)
 

 

 

(2) 

 

 

Where 𝑛 is the size of the training data, and the probability notations have the same 

interpretation as in equation (1). For example, 𝑃(𝑐̅) represents the probability that a 

document does not belong to class 𝑐.  

Odds Ratio (OR) 

The third feature-selection criterion, OR, has also been used in text classification. It 

measures the ratio between the probability of the occurrence of feature 𝑡 in a 

document of class 𝑐 and the probability that the feature does not occur in 𝑐. It can be 
defined as follows: 

 

𝑂𝑅(𝑡, 𝑐) =
𝑃:𝑡│𝑐< =1 − 𝑃:𝑡│𝑐̅<?

=1 − 𝑃:𝑡│𝑐<? 𝑃:𝑡│𝑐̅<
 

 

 

(3) 

 

 

The effectiveness of feature-selection methods for text classification has been studied 
and compared, for example, by Yang & Pedersen (1997), who concluded that 
information gain (IG) produces the most stable results. 

2.3. Representation of documents 
Because of its simplicity and effectiveness, the vector space model is perhaps the 
most commonly used method of document representation (Aas & Eikvil, 1999). In 
this model, the documents are represented by word vectors. Normally, this is a 
collection of documents represented by a document—by—word matrix denoted by 

𝑨—where each entry represents the occurrences of a word in the document. It can be 
expressed as follows: 
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𝑨 = (𝑎!") 

 

 

(4) 

 

 

Where 𝑎!" is the weight of word 𝑡 in document d. Because each word does not 

normally appear in every document, matrix 𝑨 is usually a sparse matrix (i.e., a large 

matrix in which most of its elements are zero). The number of columns (𝑁) in the 
matrix corresponds to the number of words in the dictionary, so it can be a very large 
number.  

Matrix 𝑨 is one of the most common formats for representing the corpus of a text in 
a bag-of-words (BOW) format. The advantage of this representation is that it allows 
data to be analyzed with vector and matrix algebra, effectively moving from text to 

numbers. When using special matrix formats for sparse matrices, text data in 𝑨 
format are quite efficient in memory, and they can be analyzed with highly optimized 
operations (Welbers et al, 2017). 

There are several ways to determine the weight 𝑎!" of word 𝑡 in document 𝑑 (Aas & 

Eikvil, 1999), but most approaches are based on two empirical observations 
regarding the text: 

1. The more times a word occurs in a document, the more relevant it is to the 
topic of the document. 

2. The more times the word occurs throughout all the documents in the 
collection, the more poorly it discriminates between documents. 

Let 𝑓)! be the frequency of the word 𝑡 in document 𝑑, 𝑀 be the number of documents 

in the collection, 𝑁 be the number of words in the collection after the stopwords have 
been removed and a stemming procedure has been performed (see section 2.2.), and 

𝑛! be the total number of times the word 𝑡 occurs in the entire collection.  

The simplest approach is to assign a weight of one if the word appears in the 
document, and a weight of zero otherwise. This can be expressed as follows: 
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𝑎!" = (
1, 𝑠𝑖	𝑓𝑑𝑡 > 0
0, 𝑒. 𝑜. 𝑐.

 

 

 

(5) 

 

 

Another simple approach is to use the word frequency in the document,  

 

𝑎)! = 𝑓)!   

 

 

(6) 

 

 

However, these two schemes do not take into account the word frequency across all 
the documents in the collection. A well-known approach to calculating word weights 

is word weighting ‘𝑡𝑓 − 𝑖𝑑𝑓’, which assigns weights to the word 𝑡 in document 𝑑 in 
proportion to the number of occurrences of the word in the document, and in inverse 
proportion to the number of documents in the collection where the word occurs at 
least once. This scheme for weighting terms produces good classification results, and 
therefore it has been selected for this work. It can be calculated as follows:  

 

𝑎)! = 𝑓)! ∙ 𝑙𝑜𝑔 P
𝑀
𝑛!
Q 

 

 

(7) 
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3. Methods of text classification 
Text classification is the problem of automatically assigning one or more predefined 
classes to free text documents (Aas & Eikvil, 1999). The more text information 
available, the more its effective retrieval becomes difficult without good indexing and 
a summary of the document’s content. Document classification is one solution to this 
problem. A growing number of statistical methods and machine-learning techniques 
have been applied to text classification in recent years. 

Most research in this area has been devoted to binary issues, where a document is 
classified as relevant or irrelevant with respect to a predefined topic of interest. 
However, many sources of textual data (such as internet news, e-mails, and digital 
libraries) consist of a range of subjects. They therefore pose the problem of 
classification of multiple classes. 

A common approach to the problem of classification with multiple classes is to 
separate each problem into a binary classification, one for each class. For the 
methods naïve Bayes and support vector machine in particular, the classification of 
a new document requires the application of all binary classifiers and the 
consolidation of their predictions into a single decision. The result is a ranking of 
possible topics according to the probability of their belonging to each class.  

The sections below describe some of the algorithms for text classification that have 
been proposed and evaluated in the past. The following algorithms have been 
considered as alternative classifiers in this work: naïve Bayes, support vector 
machines, and random forests. It should be noted that these algorithms operate 
under a supervised scheme (i.e., classifiers are trained with examples (documents) 
whose class has previously been labeled). 

First, some general notation: Let 𝑑 = {𝑑,, . . . , 𝑑-} be a vector of documents to be 

classified and 𝑐,, . . . , 𝑐. be the possible classes. It is assumed that each document 𝑑/ 
can be expressed as a numerical vector representing the weights of terms or features 

𝑑/ = {𝑡,, . . . , 𝑡-} ∈ ℜ0 (see section 2.3.) 

3.1. Naïve Bayes 
The naïve Bayes (NB) classifier is a probabilistic learning algorithm derived from 

Bayesian decision theory (Mitchell, 1997). The probability of a document 𝑑 of class 𝑐 

denoted by 𝑃(𝑐|𝑑) is calculated as follows: 
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P(c|d) ∝ 𝑃(𝑐)Y𝑃(𝑡𝑘|c)
𝑚

𝑘=1
 

 

 

(8) 

 

 

  
Where 𝑃(𝑡.|	c) is the conditional probability that feature 𝑡. occurs in a document of 

class 𝑐, and 𝑃(𝑐) is the a priori probability that a document occurs in class 𝑐. 𝑃(𝑡.|	c) 

can be used to measure how much evidence 𝑡. 	provides that 𝑐 is the correct class 
(Manning et al., 2008). In document classification, the class to which the feature 
belongs is determined by finding the most probable class, or maximum a posteriori 

(MAP), 𝑐123 , defined by: 

 

𝑐123 = argmax
'∈'!

𝑃(𝑐|𝑑) = argmax
'∈'!

𝑃(𝑐)Y𝑃(𝑡𝑘|c)
𝑚

𝑘=1
 

 

 

(9) 

 

 

Equation (9) involves the multiplication of many conditional probabilities, one for 
each feature. In practice, the multiplication of probabilities often becomes a sum of 
logarithms of probabilities. Therefore, the maximization of the equation can also be 
determined by the following expression: 

𝑐123 = argmax
'∈'!

_log 𝑃(𝑐) +) log𝑃(𝑡𝑘|c)
-

.4,

c 

 

 

(10) 
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All model parameters (i.e., the a priori classes and probability distributions of the 

features) can be estimated with relative frequencies from training set 𝑑. Note that 
when a class and a document feature do not occur together in the training set, the 
probability estimate, based on the corresponding frequency, will be zero. This would 
leave the right side of equation (10) undefined. This problem can be mitigated by 
incorporating corrections, such as Laplace smoothing, into all probability estimates. 

NB is a simple probability-learning model that can be implemented efficiently with 
linear complexity. A simplistic (naïve) assumption is that the presence or absence of 
a feature in a class is completely independent of any other feature. Despite the 
frequent imprecision of its oversimplified assumption (particularly for text domain 
problems), NB is one of the most widely used classifiers and has several properties 
that make it surprisingly useful and accurate (Berry & Kogan, 2010). 

3.2. Support Vector Machine 

Support vector machine (SVM) has been considered one of the most promising 
algorithms in text classification (Berry & Kogan, 2010). SVMs are linear classifiers 
that operate in a space of high-dimensional features. This space is a nonlinear 
mapping of the input space of the problem in question. In the transformed space, an 
SVM builds a hyperplane of separation that maximizes the distance between the 
training samples of two classes by selecting two parallel hyperplanes that are tangent 
to at least one sample of their kind. Such samples in the tangent hyperplanes are 
called support vectors. The distance between the two tangent planes is the margin 
classifier, which must be maximized. Thus, a linear SVM is also known as a 
maximum-margin classifier. An advantage of working in a high-dimensional feature 
space is that, in many problems, the nonlinear classification task in the original input 
space becomes a linear classification task in the high-dimensional feature space. 
SVM works in the high-dimensional feature space without incorporating any 
additional computational complexity. 

SVM’s strength comes from two key properties it possesses: kernel representation 
and margin optimization. In SVMs, a kernel function can assign a high-dimensional 
feature space and learn the classification task in that space without any additional 
computational complexity. A kernel function can also represent the dot product of 
two data-point projections in a high-dimensional feature space. Which high-
dimensional space to use depends on the selection of a specific kernel function. The 
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classification function used in SVMs can be written in terms of the dot products of 
the input data points. Therefore, using a kernel function, the classification function 
can be expressed in terms of dot products of the projections of input data points in a 
high-dimensional feature space. Kernel functions do not explicitly assign data points 
to higher-dimensional space. Instead, they provide SVMs with the advantage of 
learning the classification task in that higher-dimensional space.  

The second key property of SVMs is the way in which they achieve the best 
classification function. SVMs minimize the risk of overfitting of training data by 
determining the classification function (a hyperplane) with a maximum margin of 
separation between the two classes. This property provides SVMs with a very 
powerful capacity for the generalization of classification. 

This applies only to binary classification tasks. Therefore, the use of SVMs for text 
classification (a multi-class problem) must be approached as a series of binary 
classification problems. 

In SVMs, the classification function is a hyperplane that separates the different 
classes of data. 

〈𝒘, 𝑥〉 + 𝑏 = 0 

	

 

(11) 

 

 

The notation 〈𝒘, 𝑥〉 represents the dot product between the coefficients of the normal 

vector 𝒘, which is perpendicular to the hyperplane and the vector of variables 𝑥. The 

scaling (𝑏) is a term that refers to the bias. 

The solution to the classification problem is then specified by the normal vector 𝒘. It 

is possible to demonstrate that vector 𝒘 can be written as a linear combination of the 

data points 𝑥/, where 𝑖 = 1, . . . , 𝑚, (i.e.,	𝒘 = ∑ 𝛼/𝑥/-
/4, , 𝛼/ ≥ 0). The data points 𝑥/ with 

non-zero 𝛼/ are called support vectors. 

A kernel function 𝑘 can be defined as 𝑘(𝑥,, 𝑥() = 〈Φ(𝑥,), Φ(𝑥()〉, where Φ:𝑋 → 𝐻 is a 

mapping of points in input space 𝑋 into hyper-dimensional space 𝐻. As can be seen, 
the kernel function implicitly maps the input data points into a higher-dimensional 
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space and returns the dot product without mapping or calculating them. There are 
many suggested kernel functions for SVM. Some of the kernel functions widely used 

in the literature are linear function, 𝑘(𝑥,, 𝑥() = 〈𝑥,, 𝑥(〉; Gaussian radial base function 

(RBF), 𝑘(𝑥,, 𝑥() = 𝑒56‖8"58#‖#, and polynomial function,	𝑘(𝑥,, 𝑥() = 〈𝑥,, 𝑥(〉). The 
selection of a specific kernel function for an application depends on the nature of the 
classification task and the input data set. As can be inferred, the performance of 
SVMs depends largely upon which specific kernel function is used. According to 
Joachims (1998), the performance of the linear kernel function in text classification 
is comparable to the performance of nonlinear alternatives. 

The classification function in (11), where 𝑦/ are the class labels of the entry points, 
has a dual representation as follows: 

)𝛼/𝛾/〈𝑥/ , 𝑥〉
/

+ 𝑏 = 0	

 

 

(12) 

 

 

Using a kernel function 𝑘, the dual classification function above can be written in 

high-dimensional space 𝐻 as follows: 

)𝛼/𝛾/𝑘〈𝑥/ , 𝑥〉
/

+ 𝑏 = 0	

 

 

(13) 

 

 

As mentioned above, the best classification function of SVM is the hyperplane that 
has the maximum margin separating classes. The problem of finding the hyperplane 
of the maximum margin can be formulated as a quadratic programming problem. 
With the dual representation of the above classification function in high-dimensional 

space 𝐻, the coefficients 𝛼/ of the best classification function are found in order to 
solve the following quadratic (dual) programming problem. 
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max
9

𝑊(𝛼) =)𝛼/

-

/4,

−
1
2
) 𝛼/𝛼:

-

/,:4,

𝛾/𝛾:𝑘:𝑥/ , 𝑥:< 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	0 ≤ 𝛼/ ≤
𝐶
𝑚
	(𝑖 = 1, . . . , 𝑚);	)𝛼/𝛾/ = 0

-

/4,

	

 

(14) 

 

 

The parameter 𝐶 in the above formulation is called the cost parameter of the 
classification problem. The cost parameter represents the penalty value used in 

SVMs to classify an input data point. A high value of 	𝐶 will result in a complex 
classification function with minimal misclassification of input data, while a low value 

of 𝐶 will produce a simpler classification function. Therefore, setting an appropriate 

value for 𝐶 is critical to the performance of SVMs.  

The optimization problem described above is very challenging when the data set is 
very large because the computational complexity is equal to the square of the size of 
the data set. The computational and storage complexities can be reduced by dividing 
the training data set into a number of chunks and extracting support vectors from 
each of them. The support vectors can later be combined.  

The same procedure can be used to incorporate new documents into the existing set 
of support vectors. It can be shown that the results of incorporating new documents 
are as good as the results of processing all documents together (Aas & Eikvil, 1999). 

3.3. Random Forests 
The random forests algorithm (Breiman, 2001) is an ensemble method for decision 
trees in which the bagging of each tree in a set of decision trees is constructed from a 
bootstrapped sample of feature vectors from the training data. Each bootstrap 
sample of feature vectors is obtained through repeated random sampling with 
replacement until the bootstrap sample size matches the size of the original training 
subset. This helps to reduce the variance of the classifier by lowering the possibility 
of overfitting with the training sample. When constructing each decision tree, only a 

subset of the randomly selected features n is considered for building each decision 
node, thus avoiding correlations between trees. 

The random forests algorithm is used for document classification. It works as 
follows: 
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Step 1: train each tree with a random sample of “m” records, where m	 < M, and 

where M is the number for the entire sample. Approximately 63.2% of the training 
data is selected with the bootstrap method (Liu et al, 2015).   

Step 2: build a decision tree with the extracted sample, which is not pruned. For the 

construction of the tree, √n features are used by default from the n features available 
(classification problem). 

Step 3: repeat steps 1 and 2. Construct a large number of decision trees and develop 

the sequence of decision-tree classification {h,(X), h((X), … , h;<=>>(X)}.  

During the modeling of random forest, the data comes from a bootstrap sample, so 
approximately 36.8% of the samples, which are called Out-Of-Bag (OOB), have not 
been extracted. The data from this sample are used as a test data set for measuring 
the performance of the model through its estimated OOB error rate. Breiman (2001) 
demonstrated that this is unbiased. Thus, the random forests model appears not to 
be overestimated. 

Step 4: The final classification is determined for each recorded vote from the results 
of the decision-tree classification. 

This can be expressed as follows: h? is an individual decision tree model, Y represents 

the output variable (or target), and I	(				) is an indicator function. 

	H(x) = argmax
@
)I(h?(x) = Y)
;

?4,

 

 

 

(15) 

 

 

Each tree provides a classification of the remaining data (OOB), and the tree “votes” 
for that class. The forest chooses the classification that has the most votes over all the 
trees in the forest. This is the random forest’s score, and the percentage of votes 
received by a class is the predicted probability. In a model with a binary response, if 
200 of 500 trees are OOB, and 160 vote for class 1 and 40 vote for class 2, then the 
random forest model classifies it as class 1 with a probability of 0.80 (160/200).  
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From the n features randomly selected to construct each of the decision nodes, the 

condition is selected with respect to the class 𝑐 that best reduces the Gini impurity 

metric g of the data, which indicates how often an element randomly selected from 
the set would be incorrectly labeled if it were randomly labeled according to the 
distribution of labels in the subset. The Gini impurity reaches its minimum (zero) 
when all cases of a node belong to a single target category. The higher its value, the 
more uncertain the classifier is about whether a feature vector belongs to one class 
or another. The calculation of Gini impurity for a tree node is obtained by the 
following expression: 

   

g = 1 −)𝑃'(
-

'4,

 

 

 

(16) 

 

 

Where 𝑃' is the probability that a document will be labeled as class 𝑐. 
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4. Performance metrics 
A very important problem in text classification is how to evaluate the performance of 
classifiers (methods or models). Many measures have been used, each of which has 
been designed to evaluate some aspect of a system’s classification performance. This 
section describes some of the metrics documented in the literature.  

A common approach to the problem of classification with multiple classes is to 
separate each problem into a binary classification. For each class and each document, 
it is determined whether the document belongs to the class of interest (positive class) 
or not (negative class). When evaluating the performance of a classifier, four 
numbers derived from the confusion matrix are of interest to each class (Figure 1). 

Figure 1. Confusion Matrix for a two-class problem 
 Positive prediction Negative prediction 

Positive observed TP FN 

Negative observed FP TN 
Source: Own elaboration 

 

Where, 

TP: Number of documents correctly predicted for the class of interest. 
FP: Number of documents incorrectly predicted for the class of interest. 
FN: Number of documents incorrectly rejected for the class of interest. 
TN: Number of documents correctly rejected for the class of interest. 
 

From these quantities, the following performance metrics are determined: 

• Recall: measures the precision of the classifier (model) for cases of the class of 
interest. 
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𝑟𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃 + 𝐹𝑁
 

 

 

 

(17) 

 

 

• Precision: measures the precision of the classifier (model) for the predicted 
cases of the class of interest. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

(18) 

 

 

• Accuracy: measures the overall precision of the predictions made by the 
classifier (model). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

 

 

(19) 

 

 

Micro- and macro-averaging: there are two conventional methods of evaluating 
average performance across classes, namely macro-average and micro-average (Aas 
& Eikvil, 1999). The score of the macro-average is determined by calculating the 
performance metrics by class and then averaging these to calculate the overall 
averages. The score of the micro-average is determined by first calculating the totals 

of 𝑇𝑃, 𝐹𝑃, 𝐹𝑁,	and 𝑇𝑁	for all classes and then using these totals to calculate the 
performance metrics. An important distinction between the two types of averages is 
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that the micro-average gives equal weight to each document, while the macro-
average gives equal weight to each class. 

Break-even point: The above performance metrics can be misleading when 
examined on their own. A classifier usually exhibits a trade-off between recall and 
precision, where obtaining a high recall typically means sacrificing precision, and 
vice versa. If recall and precision are configured to have the same value, then this 
value is called the break-even point of the system. The break-even point has been 
commonly used in text classification evaluations (Aas & Eikvil, 1999).  

F-measure: another evaluation criterion that combines recall and precision is the 
F-measure. 

𝐹A =
(1 + 𝛽() ∙ 	𝑟𝑒𝑐𝑎𝑙𝑙	 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝛽( ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 

 

 

(20) 

 

 

Where 𝛽 is a parameter that permits different weightings of recall and precision. For 

this study, it has been assumed that 𝛽 = 1.	That is, the F1 score is the harmonic 
average between recall and precision.  
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5. Application to the definitions used in the ENE 
As mentioned above, this document applies text-mining methods described in the 
previous sections to the definitions used in the National Employment Survey (ENE). 
INE must classify many texts every month, and thus the purpose of this study is to 
create an alternative to their manual classification. 

5.1. The data set 
The data set is the 183,784 documents from the 2017 database of the ENE. The 
definitions were derived from the responses of informants regarding their 
“profession, job, or occupation” and the “economic sector” of the company that 
employs them, which are taken from questions B1 and B14b of the questionnaire.  

The target variables for training the classifiers are the variables of economic activity 
from the CIUO (the Spanish version of the International Standard Classification of 
Occupations (ISCO)) and CAENES (Classification of National Economic Activity for 
Socio-demographic Surveys) at one and two digits. CIUO classification (DANE, 
2005) is one of the main classifications for which the International Labour 
Organization (ILO) is responsible. CIUO organizes jobs into a series of clearly 
defined groups according to characteristic tasks. CAENES (INE, 2016) is based on 
the Chilean Classification of Economic Activities CIIU4.CL 2012, whose structure 
facilitates the classification of economic activities. CAENES is used because its most 
disaggregated category (class) can include several subclasses, classes, or groups of 
CIIU4.CL 2012 and other categories can be added to it as needed, allowing the level 
of detail required for household surveys. 

In short, four target variables are used in the training of classifiers, namely CIUO-1, 
CIUO-2, CAENES-1 and CAENES-2. These variables account for the economic-
activity classifiers CIUO at one and two digits, and CAENES at one and two digits, 
respectively. CIUO-1 consists of 10 classes, CIUO-2 consists of 27 classes, CAENES-
1 consists of 21 classes, and CAENES-2 consists of 83 classes. 

It should be noted that the documents used in the classification process of CIUO-1 
and CIUO-2 are the result of the concatenation of the “occupation, description of 
tasks” and the “economic sector” to which the company belongs, as answered by the 
informants. In CAENES-1 and CAENES-2, the texts are associated with the 
“economic sector” to which the company belongs, as declared by the informant.  
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In the data used for CAENES-1 and CAENES-2 classifications, the presence of null 
and missing values in the documents was detected. Therefore, they were removed, 
leaving 177,176 documents in the data set. To construct the classifiers, the input data 
sets were divided into a training set of 80% of the cases, and a test set of 20%. Table 
1 summarizes the composition of the training and test sets for the construction of 
each classifier.  

Table 1. Training and test data sets for CIUO and CAENES 

Classifier No. training sets No. test sets 

CIUO-1 147,027 36,757 

CIUO-2 147,027 36,757 

CAENES-1 141,740 35,436 

CAENES-2 141,740 35,436 
Source: Own elaboration 

 

5.2. Data preparation 
The bodies of all documents were converted from the original format (i.e., character 
strings) to word vectors. Below, the steps of this procedure are described. 

1. Individual words were extracted through standardization and tokenization (see 
section 2.1). Then, using a list of 344 high-frequency words in Spanish (e.g., ante, 
de, cual, entonces), the stopwords were removed. Subsequently, a stemming 
process was completed with the R hunspell library (Ooms, 2017). This procedure 
resulted in 37,685 unique words. 

 
2. The Information Gain (IG) was used as a metric for the selection of features in 

order to distinguish words that provide more information for classification. The 
results of this metric can be seen in annex 1. In addition, words appearing below 
a specified frequency (in this case 5) were removed from all documents in the 
collection (see section 2.2.). Thus, 8,448 words remained in the CIUO 
classification. The reduction in dimensionality resulted in a document-word 

matrix of 147.027	𝑥	8.448 for the training data set. For CAENES classification, 

5,346 words remained, resulting in a document-word matrix of 141,740	𝑥	5,346 
for the training data set. 
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3. The weight measurement “tf - idf” was used for indexing words in the document-
word matrix (see section 2.3.). 

 

5.3. Use of machine-learning methods 
This study sought to apply and evaluate three machine-learning techniques for the 
classification of documents (definitions) in some of the groups of economic activity 
defined by CIUO (one and two digits) and CAENES (one and two digits). Texts were 
classified in supervised mode, that is, classification included training with examples 
of previously labeled classes (groups of activity). 

The parameters for the techniques used in the comparative evaluation were 
established from the test results in the data set. No additional parameter adjustments 
were made. Although tuning parameters to specific data sets may be beneficial, the 
use of generally accepted configurations is more typical in practice. The need for 
significant time and effort for fine-tuning the parameters can often be an impediment 
to their practical application, and it can lead to specific data overfitting problems. 

For naïve Bayes (NB), the a priori classes and probability distributions of features 
were estimated from the frequencies of the training data set. 

For support vector machine (SVM), a linear kernel was used. The optimization of the 

cost	𝐶 parameter through a 10-fold cross validation resulted in an optimal value of 
0.75 for CIUO and CAENES to one digit and an optimal value of 1.0 for CIUO and 
CAENES to two digits. 

For random forest (RF), the number of features was set at √𝑛, and the number of 

trees was set at 𝑇 = 1000.   

These three methods were implemented with the statistical software R (R Core Team, 
2018). 

5.4. Results 
The results obtained from the application of the previously described methods to 
ENE definitions are shown below. Precision, recall, and F1 score were used to 
evaluate the performance of the different methods (see section 4). 



 
27       

5.4.1. CIUO-1 

Table 2 displays in descending order the numbers of documents in the collection used 
for training and testing the models for each of the classes of CIUO-1. The frequency 
of class 9 (elementary occupations) stands out. 

Table 2. Training and test data sets for CIUO-1   

Class No. training 
sets No. test sets 

9. Unskilled workers 35,469 8,788 

5. Service and sales workers 22,337 5,606 

Officers, operators, artisans, and workers in the 
manufacturing, construction, and mining industries 20,378 4,984 

3. Technicians with non-university post-secondary training 
and assistants 16,309 4,005 

2. Science professionals and intellectuals 15,900 4,050 

8. Plant and machine operators and assemblers 12,942 3,268 

4. Clerical support workers 12,667 3,228 

6. Agricultural, forestry, and fishery workers 7,223 1,816 

1. Members of the executive branch, legislative bodies, and 
management staff of public administration and of companies 2,616 688 

10. Armed forces 1,186 324 
Source: Own elaboration 
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Chart 1 shows that all three methods have a relatively stable performance across 
classes. SVM performed best in all classes, especially in classes 9, 5, and 7, which 
have the largest number of documents in the collection. The recall of SVM for these 

classes was approximately 90%.	 In contrast, classes 3 and 1 performed poorly for all 
methods, its level of recall below 70%. 

Chart 1. Recall performance, according to method for CIUO-1 

 

Source: Own elaboration 
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As can be seen chart 2, NB works very well in predicting class 9 (the most populated 
class in the data set), achieving a precision of 94%. All three methods show a 
relatively stable performance of over 80%, mainly in the classes with the largest 
number of documents in the collection (i.e., 9, 5, and 7). As in recall, classes 3 and 1 
performed poorly, their precision approximately 68%. 

Chart 2. Precision performance, according to method for CIUO-1 

 

Source: Own elaboration 
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In chart 3, the F1 score shows results similar to the recall method, but SVM 
performed best among the three methods.  

Chart 3. F1-score performance, according to method for CIUO-1 

 

Source: Own elaboration 

 

5.4.2. CIUO-2 

Table 3 displays in descending order the numbers of documents in the collection used 
for training and testing the models for each of the classes of CIUO-2. The most 
notable frequencies were in classes 91 and 52, which refer to sales and service 
activities.  

Table 3. Training and test data sets for CIUO-2 

Class No. training 
sets No. test sets 

91. Unskilled service workers (except domestic service workers 
and similar) 19,503 4,794 

52. Protection and security services personnel 12,469 3,156 

51. Personal service workers 9,868 2,450 

83. Vehicle drivers and mobile heavy equipment operators 9,840 2,549 
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Class No. training 
sets No. test sets 

34. Other associate professionals and assistants 9,756 2,354 

92. Domestic service workers, cleaners, launderers, ironers, 
and the like 9,128 2,285 

71. Officers and workers in extractive industries 8,544 2,077 

41. General and keyboard clerks 8,501 2,140 

61. Farmers and forestry, livestock, and fisheries workers 7,223 1,816 

93. Mining, construction, manufacturing, and transport 
workers 6,838 1,709 

72. Construction officers and workers 6,024 1,442 

23. Education Professionals 5,588 1,378 

24. Other scientific and intellectual professionals 5,398 1,393 

74. Machine and equipment mechanics and installers 4,992 1,267 

42. Customer service workers 4,166 1,088 

21. Professionals in the physical, chemical, mathematical, and 
engineering sciences 2,899 793 

32. Associate professionals in the biological, medical, and 
health sciences 2,683 658 

31. Associate professionals in the physical, chemical, 
engineering, and related sciences 2,231 583 

22. Professionals in the biological sciences, medicine, and 
health 2,015 486 

82. Machine operators and assemblers 1,978 462 

13. Public and private production and specialized services 
managers 1,657 446 

33. Teaching assistants and instructors in formal, special, and 
vocational education 1,639 410 

110. Officers of the armed forces 1,186 324 

81. Stationary Plant and Machine Operators 1,124 257 

12. General managers of private companies 837 213 

73. Metalworkers and similar 818 198 

11. Chief executives, senior officials, and legislators 122 29 

Source: Own elaboration 
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In chart 4, all three methods are relatively stable across classes. SVM performed best 
in almost all classes, achieving a recall of about 90% in classes 91 and 52, which 
contain the most documents in the collection. RF performed similarly to SVM, 
particularly in the classes with the highest number of documents. Finally, NB is at a 
distance from SVM and RF in almost all classes. In addition, the results are 
consistent with those observed in CIUO-1. The results of classes such as 11, 12, 13, 31, 
32, and 33 of CIUO-2 are similar to the results of classes 1 and 3 of CIUO-1, whose 
recall was approximately 60%. 

Chart 4. Recall performance, according to method for CIUO-2 

 

Source: Own elaboration 
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In chart 5, all three methods show relatively stable behavior across classes. For class 
91, NB exhibits a remarkable precision of 95%. SVM and RF stand out for their parity 
in high performance across classes, mainly in those with a higher number of 
documents, achieving a precision of approximately 85%. 

Chart 5. Precision performance, according to method for CIUO-2 

 

Source: Own elaboration 
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In chart 6, 𝐹, shows a similar pattern to the results of recall, where SVM performed 
best in almost all classes. 

Chart 6. F1-score performance, according to method for CIUO-2  

 

Source: Own elaboration 

 

5.4.3. CAENES-1 

Table 4 displays in descending order the numbers of documents in the collection 
used for training and testing the models for each of the classes of CAENES-1. 

Table 4. Training and test data sets for CAENES-1 

Class No. training 
sets No. test sets 

G. Wholesale and retail trade; repair of motor vehicles and 
motorcycles 26,718 6,556 

A. Agriculture, forestry, and fishing 17,569 4,439 

C. Manufacturing 14,688 3.688 

P. Education 13,027 3,201 

F. Construction 11,585 2,840 
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Class No. training 
sets No. test sets 

H. Transportation and storage 9,179 2,388 

O. Public administration and defense; compulsory social 
security 9,064 2,343 

Q. Human health and social work activities 8,030 2,048 

I. Accommodation and food service activities 6,398 1,575 

B. Mining and quarrying 4,707 1,193 

S. Other service activities 4,258 997 

M. Professional, scientific, and technical activities 3,665 885 

N. Administrative and support activities 3,236 863 

K. Financial and insurance activities 2,294 575 

J. Information and communication 1,960 512 

R. Arts, entertainment, and recreation 1,647 420 

L. Real estate activities 1,127 288 

E. Water supply; sewerage, waste management, and 
remediation activities 975 230 

D. Electricity, gas, steam, and air conditioning supply 806 197 

T. Activities of households as employers; undifferentiated 
goods- and services-producing activities of households for 

own use 
769 187 

U. Activities of extraterritorial organizations and bodies 24 5 

Source: Own elaboration 
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In Chart 7, all three methods show very stable performances, achieving a recall over 
90% in almost all classes, a very satisfactory result. In contrast, the recall of class U 
(activities of extraterritorial organizations and bodies) was below 70%. However, 
because of its low number of training (and test) documents, this result should be 
taken only as a descriptive reference. Overall, SVM shows a slight performance 
advantage over NB and RF. 

Chart 7. Recall performance according to method for CAENES-1 

 

Source: Own elaboration 
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In chart 8, all three methods show a high level of precision. SVM performs best, 
reaching over 90% in almost all classes. As in recall, the performances observed in 
class U should be considered as descriptive only. 

Chart 8. Precision performance, according to method for CAENES-1 

 

 
Source: Own elaboration 
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In chart 9, the F1 score shows a pattern similar to the results observed in precision. 
SVM performed best in all classes, achieving a performance above 90% in almost all 
classes.  

Chart 9. F1-score performance, according to method for CAENES-1 

 

Source: Own elaboration 

 

5.4.4. CAENES-2 

Table 5 shows in descending order the numbers of documents in the collection used 
for training and testing the models for each of the classes that make up the top 27 of 
the number of documents for CAENES-2. These classes represent approximately 
86% of the documents in the collection. Table 5 also shows a notable frequency of 
documents belonging to Class 48 (wholesale and retail trade, except for motor 
vehicles and bicycles). Charts 10, 11, and 12 show the performances for these classes, 
according to recall, precision, and F1 score, respectively. For the performance of the 
remaining classes, see annex 2. 
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Table 5. Training and test data sets for the Top 27 of CAENES-2 

Class No. training 
sets No. test sets 

48. Wholesale and retail trade; repair of motor vehicles and 
motorcycles 23,908 5,848 

1. Crop and animal production, hunting, and related service 
activities 14,653 3,684 

85. Education 13,027 3,201 

84. Public administration and defense; compulsory social 
security 9,064 2,343 

 41. Construction of buildings 6,775 1,727 

86. Human health activities 6,657 1,715 

49. Land transport and transport via pipelines 6,652 1,703 

56. Food and beverage service activities 5,221 1,280 

10. Manufacture of food products 5,071 1,202 

43. Specialized construction activities 3,796 874 

4. Mining and processing of copper 3,743 977 

45. Wholesale and retail trade and repair of motor vehicles and 
motorcycles 2,810 708 

96. Other personal service activities 2,077 468 

52. Warehousing and support activities for transportation 1,740 466 

81. Services to buildings and landscape activities 1,663 411 

14. Manufacture of wearing apparel 1,624 426 

69. Legal and accounting activities 1,610 384 

3. Fishing and aquaculture 1,528 399 

64. Financial service activities, except insurance and pension 
funding 1,486 373 

2. Forestry, logging, and related activities 1,388 356 

25. Manufacture of fabricated metal products, except 
machinery and equipment, and metal working services 1,301 316 

16. Manufacture of wood and of products of wood and cork, 
except furniture; manufacture of articles of straw and plaiting 

materials 
1,256 342 

94. Other personal service activities 1,216 288 
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Class No. training 
sets No. test sets 

55. Food and beverage service activities 1,177 295 

68. Real estate activities 1,127 288 

42. Wholesale and retail trade and repair of motor vehicles and 
motorcycles 1,014 239 

95. Repair of computers and personal and household goods 965 241 

Source: Own elaboration 

 

In chart 10, all three methods show high performance in almost all classes, achieving 
a recall of approximately 90%, a quite satisfactory result. This is observed primarily 
in the classes with the largest number of training (and test) documents. 

Chart 10. Recall performance, according to method for CAENES-2. Classes are of the first 
twenty-seven positions, according to the number of documents in the collection. 

 

Source: Own elaboration 
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In chart 11, all three methods exhibit relatively stable performances, achieving a 
precision of approximately 90%. SVM performed best in almost all classes.  

Chart 11. Precision performance, according to method for CAENES-2. Classes are of the 
first twenty-seven positions, according to the number of documents in the collection. 

 

Source: Own elaboration 
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In chart 12, the F1 score shows a similar pattern to the results of precision. SVM 
performed best among the three methods. 

Chart 12. F1-score performance, according to method for CAENES-2. Classes are of the 
first twenty-seven positions, according to the number of documents in the collection. 

 

Source: Own elaboration 

 

5.4.5. Overall performance 

To evaluate the overall effectiveness of the methods, we followed other studies 
reported in the literature by using a recall/precision break-even point that accounts 
for the trade-off between recall and precision. Average class performance was 
calculated using micro-averages, a measure that gives equal weight to each document 
in the collection (see section 4). Chart 13 shows the recall/precision obtained for both 
the CIUO and CAENES classifications, including all classes in each case. It should be 
noted that all three methods are very competitive and work well in the task of 
classification, achieving a recall/precision of over 80% for CIUO and over 90% for 
CAENES, which is quite satisfactory. SVM achieved the highest performances for 
recall/precision in CIUO-1 (86.6%), CAENES-1 (95.3%), and CAENES-2 (93.0%). 
For CIUO-2, SVM and RF preformed best, both achieving a recall/precision of 85.3%. 
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Chart 13. Recall-Precision performance, according to method for CIUO and CAENES 
classifications 

 

Source: Own elaboration 

 

5.5. Discussion and comparison of methods 
Compared to the classification of texts in general, the classification of definitions in 
the ENE is a special task, and it is quite challenging. The target variables have a range 
of possible classes: CIUO-1 has 10 classes, CIUO-2 has 27, CAENES-1 has 21, and 
CAENES-2 has 83 classes. Although some classes appear similar, important 
differences in the features of classes of economic activity should not be overlooked. 
In CIUO-1, for example, the vocabulary is far more extensive in class 9 than in class 
10. Ideally, a successful machine-learning algorithm used in this particular 
classification domain should make full use of the possible differences among classes 
of economic activity. More importantly, it should profile classes precisely with only a 
small number of false positives. In order to characterize economic activities in a way 
that distinguishes related classes, it is important to have correctly standardized texts 
and, when collecting information, to capture specific words. For example, CIUO-1 



 
44       

performed rather poorly in classes 1 and 3 because these classes include technical 
and professional activities of the informant that are captured in class 2. 

As in many other machine-learning applications, declaring an algorithm as the best 
for the classification of definitions is a very difficult task, perhaps an impossible one. 
The experiments and analyses conducted in this study, however, have revealed some 
interesting characteristics of the three methods investigated. They are summarized 
below: 

1. Naïve Bayes (NB) is simple, and it is the fastest in model learning among the 
three methods. It works well for the classification of texts. Because the algorithm 
assumes that the individual features are completely independent of each other, 
the model can benefit from an effective selection of features, which has been 
demonstrated in the experiments. In the same vein, NB may perform poorly if 
applied to a data set with some observable dependencies among features. In the 
experiments, NB performed remarkably well in its precision over the most 
populated class of each of the classifications. A possible explanation is that the 
probabilities were established a priori through the frequencies observed in the 
documents. 

 
2. Support vector machine (SVM), as reported in many previous studies, is a very 

stable classifier, and it can be scaled to the dimensions of features. In this study, 
SVM was the best classifier, as reflected through the measurements of recall, 
precision, F1 score, and recall/precision. The recall/precision break-even point 
of SVM was 86.6% for CIUO-1, 85.3% for CIUO-2, 95.3% for CAENES-1, and 
93.0% for CAENES-2. The kernels function and cost parameter C selected for 
SVM dramatically influence the outcome. In this study, a linear kernel function 
was chosen, which turned out to be relatively fast in model training 
(approximately 2 hours in processing). The cost parameter was determined 
through 10-fold cross validation. An important property of SVM is the way in 
which it reaches the best classification function by establishing the maximum 
margin of separation between two classes. This gives SVM a powerful capacity 
for generalization of classification. 

 
3. Random forest (RF) works best in the CIUO-2 classification and is very 

competitive, its performances similar to those of SVM. Although hardware 
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requirements for calculations make the training of the models relatively slow 
(approximately 14 hours in processing), the application of bagging, which is a 
feature of RF, gives it a powerful capacity for the generalization of classification. 
Because the number of features to be used in RF is crucial, the number chosen 
for this study is the same as the number recommended in the literature and as 
the number set by default in the R implementation (i.e., the square root of the 
number of features). This parameter can be calibrated in the future for better 
results. 

The three methods work very well in the task of document classification, most notably in 
their performances using CAENES, where they reach 90% in all the observed metrics. One 
possible explanation for this remarkable result is that the definition used in training (and 
testing) the models is derived exclusively from the description of the “economic sector” of 
the company where the informant works. This provides shorter texts with specific words that 
characterize an economic activity. The methods have reasonable processing times, which 
can however be decreased by improving available hardware and software. 

It is clear that the three algorithms are viable alternatives for obtaining precise 
classifications and obtaining them in much less time than is possible with manual 
classification. This reduces operational costs and increases efficiency. 

SVM performed best in statistical terms, although RF is a good alternative to CIUO-2 
classification because it is similar in capacity to SVM. However, in computational terms, 
SVM offers a shorter processing time. Consequently, based on the statistical and 
computational criteria analyzed, the use of the SVM model is recommended for the 
classification of the definitions of the National Employment Survey (ENE).  
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6. Conclusions and projections 
Typical text classification consists of the following steps: preprocessing, reduction of 
dimensionality, proper representation of documents, and classification. In this 
study, different methods have been described for all these steps, including 
alternatives that can be tested in greater depth in new studies. In addition to the 
theoretical introduction of these methods, this study evaluated the application of NB, 
SVM, and RF methods to the classification of ENE definitions. These algorithms were 
evaluated using the ENE 2017 data set. The best results were obtained with the SVM 
method, which was also easy to apply. In the future, these methods can be improved 
through a finer calibration of model parameters and through a higher quality of the 
input data, which would generate even better results in terms of precision. 

This document has responded to the need for automated systems to classify the large 
volumes of information handled by INE, most of which is classified manually. Thus, 
the text-mining and machine-learning algorithms introduced in this study have been 
proposed within INE as a viable alternative that improves precision and decreases 
costs. 

With the dramatic increase in the use of the internet and other sources of 
information, the volume of documents that institutions need to process has 
exploded. INE must play a fundamental role in this task by adequately adopting the 
latest technologies available for the development of its public role. In the future, INE 
must study the application of these or other more complex algorithms (such as deep 
learning algorithms) to much larger volumes of data. 

Finally, this study shows that it is possible, in the context of public service, to make 
improvements based on the use of free and open source software, such as the R 
platform. This could free up resources that are currently being spent on paid 
products, and it could take advantage of the opportunities for collaboration between 
institutions that this type of software facilitates. 
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Annexes 
Annex 1: Information Gain 

Charts A1 to A4 show the Information Gain (IG) of the top 25 attributes (features) 
for the classifications CIUO-1, CIUO-2, CAENES-1 and CAENES-2, respectively.  

Chart A1. Information gain of top 25 attributes of CIUO-1  

 

Source: Own elaboration 
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Chart A2. Information gain of top 25 attributes of CIUO-2 

 

Source: Own elaboration 
 

Chart A3. Information gain of top 25 attributes of CAENES-1 

 

Source: Own elaboration 
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Chart A4. Information gain of top 25 attributes of CAENES-2 

 

Source: Own elaboration 
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Annex 2: Results of CAENES-2 

Table A1 displays in descending order the numbers of documents in the collection 
used for training and testing the models for each of the classes of CAENES-2. 

Table A1. Training and test data sets for CAENES-2  

Class No. training 
sets No. test sets 

48. Wholesale and retail trade; repair of motor vehicles and 
motorcycles 23,908 5,848 

1. Crop and animal production, hunting, and related service 
activities 14,653 3,684 

85. Education 13,027 3,201 

84. Public administration and defense; compulsory social 
security 9,064 2,343 

 41. Construction of buildings 6,775 1,727 

86. Human health activities 6,657 1,715 

49. Land transport and transport via pipelines 6,652 1,703 

56. Food and beverage service activities 5,221 1,280 

10. Manufacture of food products 5,071 1,202 

43. Specialized construction activities 3,796 874 

4. Mining and processing of copper 3,743 977 

45. Wholesale and retail trade and repair of motor vehicles 
and motorcycles 2,810 708 

96. Other personal service activities 2,077 468 

52. Warehousing and support activities for transportation 1,740 466 

81. Services to buildings and landscape activities 1,663 411 

14. Manufacture of wearing apparel 1,624 426 

69. Legal and accounting activities 1,610 384 

3. Fishing and aquaculture 1,528 399 

64. Financial service activities, except insurance and pension 
funding 1,486 373 

2. Forestry, logging, and related activities 1,388 356 

25. Manufacture of fabricated metal products, except 
machinery and equipment, and metal working services 1,301 316 
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Class No. training 
sets No. test sets 

16. Manufacture of wood and of products of wood and cork, 
except furniture; manufacture of articles of straw and 

plaiting materials 
1,256 342 

94. Other personal service activities 1,216 288 

55. Food and beverage service activities 1,177 295 

68. Real estate activities 1,127 288 

42. Wholesale and retail trade and repair of motor vehicles 
and motorcycles 1,014 239 

95. Repair of computers and personal and household goods 965 241 

61. Telecommunications 935 249 

93. Sports activities and amusement and recreation activities 830 222 

88. Social work activities without accommodation 817 198 

71. Architectural and engineering activities; technical testing 
and analysis 816 211 

35. Electricity, gas, steam, and air conditioning supply 806 197 

97. Activities of households as employers of domestic 
personnel 769 187 

33. Repair and installation of machinery and equipment 679 167 

11. Manufacture of alcoholic and non-alcoholic beverages 642 180 

36. Water collection, treatment, and supply 618 131 

31. Manufacture of furniture 587 179 

87. Residential care activities 556 135 

82. Office administrative, office support, and other business 
support activities 531 176 

62. Computer programming, consultancy, and related 
activities 519 136 

65. Insurance, reinsurance, and pension funding, except 
compulsory social security 513 128 

23. Manufacture of other nonmetallic mineral products 503 103 

17. Manufacture of paper and paper products 494 129 

22. Manufacture of rubber and plastics products 425 114 
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Class No. training 
sets No. test sets 

20. Manufacture of chemicals and chemical products 419 97 

80. Security and investigation activities 410 114 

74. Other professional, scientific, and technical activities 400 97 

32. Other manufacturing 385 113 

90. Creative, arts, and entertainment activities 383 100 

8. Other mining and quarrying 367 88 

18. Printing and reproduction of recorded media 361 93 

73. Advertising and market research 349 74 

92. Gambling and betting activities 324 71 

38. Waste collection, treatment, and disposal activities; 
materials recovery 312 85 

50. Water transport 302 101 

66. Activities auxiliary to financial service and insurance 
activities 295 74 

53. Postal and courier activities 283 78 

7. Mining of metal ores, except copper 282 65 

77. Rental and leasing activities, except real estate 273 63 

24. Manufacture of basic metals 268 65 

72. Scientific research and development 214 52 

21. Manufacture of pharmaceuticals, medicinal chemicals, 
and botanical products 203 34 

51. Air transport 202 40 

30. Manufacture of motor vehicles, trailers, semi-trailers, and 
other transport equipment 189 58 

60. Radio and television programming and broadcasting 
activities 184 41 

78. Activities related to the provision of employment 182 44 

27. Manufacture of electrical equipment 181 43 

79. Travel agency, tour operator, reservation service, and 
related activities 177 55 
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Class No. training 
sets No. test sets 

9. Mining support service activities 169 29 

59. Motion picture, video, and television program 
production, sound recording, and music publishing activities 154 44 

58. Publishing activities 150 36 

75. Veterinary activities 142 29 

70. Activities of head offices; management consultancy 
activities 134 38 

91. Libraries, archives, museums, and other cultural activities 110 27 

6. Extraction of crude petroleum and natural gas 96 22 

19. Manufacture of coke and refined petroleum products 77 21 

5. Mining of coal and lignite 50 12 

37. Sewerage 43 14 

99. Activities of extraterritorial organizations and bodies 24 5 

12. Manufacture of tobacco products 23 6 

63. Information service activities 18 6 
Source: Own elaboration 

 

Charts A5 to A10 show the performances of the three methods in terms of recall, 
precision, and F1 score for CAENES-2 classes located between position 28 to 813, 
according to the number of training (and test) documents in the collection. 

  

 

3 CAENES-2 classification contains 83 classes. However, indicators could be reported for only 81 classes 
of the data set. 
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Chart A5. Recall performance, according to method for CAENES-2. Classes in positions 
28 to 54, according to the number of documents in the collection. 

 

Source: Own elaboration 

 

Chart A6. Precision performance, according to method for CAENES-2. Classes in 
positions 28 to 54, according to the number of documents in the collection. 

 

Source: Own elaboration 



 
55       

Chart A7. F1-score performance, according to method for CAENES-2. Classes in positions 
28 to 54, according to the number of documents in the collection. 

 

Source: Own elaboration 

Chart A8. Recall performance, according to method for CAENES-2. Classes in positions 
55 to 81, according to the number of documents in the collection. 

 

Source: Own elaboration 
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Chart A9. Precision performance, according to method for CAENES-2. Classes in 
positions 55 to 81, according to the number of documents in the collection. 

 

Source: Own elaboration 

Chart A10. F1-score performance, according to method for CAENES-2. Classes in 
positions 55 to 81, according to the number of documents in the collection. 

 

Source: Own elaboration 
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